The allometry of brain miniaturization in ants.

نویسندگان

  • Marc A Seid
  • Armando Castillo
  • William T Wcislo
چکیده

Extensive studies of vertebrates have shown that brain size scales to body size following power law functions. Most animals are substantially smaller than vertebrates, and extremely small animals face significant challenges relating to nervous system design and function, yet little is known about their brain allometry. Within a well-defined monophyletic taxon, Formicidae (ants), we analyzed how brain size scales to body size. An analysis of brain allometry for individuals of a highly polymorphic leaf-cutter ant, Atta colombica, shows that allometric coefficients differ significantly for small (<1.4 mg body mass) versus large individuals (b = 0.6003 and 0.2919, respectively). Interspecifically, allometric patterns differ for small (<0.9 mg body mass) versus large species (n = 70 species). Using mean values for species, the allometric coefficient for smaller species (b = 0.7961) is significantly greater than that for larger ones (b = 0.669). The smallest ants had brains that constitute ∼15% of their body mass, yet their brains were relatively smaller than predicted by an overall allometric coefficient of brain to body size. Our comparative and intraspecific studies show the extent to which nervous systems can be miniaturized in taxa exhibiting behavior that is apparently comparable to that of larger species or individuals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On being small: brain allometry in ants.

Comparative neurobiologists have provided ample evidence that in vertebrates small animals have proportionally larger brains: in a double-logarithmic plot of brain weight versus body weight all data points conform quite closely to a straight line with a slope of less than one. Hence vertebrate brains scale allometrically, rather than isometrically, with body size. Here we extend the phylogeneti...

متن کامل

The Allometry of Brain Miniaturization in Ants

Extensive studies of vertebrates have shown that brain size scales to body size following power law functions. Most animals are substantially smaller than vertebrates, and extremely small animals face significant challenges relating to nervous system design and function, yet little is known about their brain allometry. Within a well-defined monophyletic taxon, Formicidae (ants), we analyzed how...

متن کامل

Breaking Haller's rule: brain-body size isometry in a minute parasitic wasp.

Throughout the animal kingdom, Haller's rule holds that smaller individuals have larger brains relative to their body than larger-bodied individuals. Such brain-body size allometry is documented for all animals studied to date, ranging from small ants to the largest mammals. However, through experimental induction of natural variation in body size, and 3-D reconstruction of brain and body volum...

متن کامل

The scaling and allometry of organ size associated with miniaturization in insects: A case study for Coleoptera and Hymenoptera

The study of the influence of body size on structure in animals, as well as scaling of organs, is one of the key areas of functional and evolutionary morphology of organisms. Most studies in this area treated mammals or birds; comparatively few studies are available on other groups of animals. Insects, because of the huge range of their body sizes and because of their colossal diversity, should...

متن کامل

Investment in higher order central processing regions is not constrained by brain size in social insects.

The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain, behavior and evolution

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 2011